Ammoniumpermanganat

VON FUNG MING CHANG UND MARTIN JANSEN

Institut für Anorganische Chemie der Universität Hannover, Callinstrasse 9, D-3000 Hannover 1, Bundesrepublik Deutschland

(Eingegangen am 19. November 1984; angenommen am 13. August 1985)

Abstract. NH₄MnO₄, $M_r = 136.98$, orthorhombic, *Pnma*, a = 9.410 (8), b = 5.773 (5), c = 7.610 (7) Å, V = 413.4 (1) Å³, Z = 4, $D_x = 2.202$ g cm⁻³, λ (Mo K α) = 0.7107 Å, $\mu = 29.31$ cm⁻¹, F(000) = 272, T = 243 K, R = 0.056 for 420 unique observed reflections. NH₄MnO₄ (ammonium ions orientationally disordered) is isotypic with KMnO₄. The average Mn–O bond distance is 1.629 Å and thus equals (within the range of error) those in AgMnO₄ (1.633 Å) and KMnO₄ (1.629 Å).

Einleitung. Der mittlere Abstand Mn–O ist in Ag_2MnO_4 (Chang & Jansen, 1983) gegenüber K_2MnO_4 (Palenik, 1967b) geringfügig vergrössert. Dies könnte auf Einflüsse der einwertigen Gegenkationen hinweisen. Für eine systematische Betrachtung unter Einbeziehung der Oxomanganate(VII) wurden die Strukturparameter von Ammoniumpermanganat bestimmt.

Experimentelles. Ammoniumpermanganat wurde nach Müller & Krebs (1966) durch doppelte Umsetzung aus Lösungen von Bariumpermanganat (Brauer, 1981) und Ammoniumsulfat (p.a. Merck, Darmstadt) dargestellt. Durch Umkristallisieren aus Wasser wurden stäbchenförmige Einkristalle $(0.38 \times 0.06 \times 0.09 \text{ mm})$ für die Röntgenstrukturanalyse gewonnen. Ammoniumpermanganat ist stossempfindlich und zersetzt sich langsam bei Zimmertemperatur, bei der Messtemperatur von 243 K zeigte der Kristall über die Dauer der Datensammlung keine Veränderung (Standardreflexe: 002, 014, 400; 51 Reflexe zwischen $7.9 \le 2\theta \le 30.0^{\circ}$ verwendet für die Gitterkonstantenbestimmung). Vierkreisdiffraktometer Siemens AED2, Mo Ka-Strahlung, Graphit-Monochromator, ω -Abtastung, Messbereich $6.9 \le 2\theta \le 60.0^{\circ}$. $0 \leq h \leq 13$, $-8 \le k \le 8, -10 \le l \le 10, 3310$ Reflexe gemessen, 659 unabhängig (davon 420 mit $F > 3\sigma_F$), $R_{int} = 0,09$, LP-Korrektur, analytische Absorptionskorrektur (min. 0,742 und max. 0,827), als Startparameter für die Verfeinerung dienten die Atomkoordinaten von KMnO₄, endgültige *R*-Werte, R = 0.056 und wR =0,036 $[w = 1/\sigma^2(F_o)]$. Relative Parameterverschiebungen im letzten Verfeinerungszyklus $|\Delta|/\sigma$ $\leq 0,005$; die stärksten Peaks einer Differenzfouriersynthese: $-0.154 \le \Delta \rho \le 0.236$ e Å⁻³. Die Atomformfaktoren für neutrale Atome wurden den International Tables for X-ray Crystallography (1974) entnommen, die Rechnungen mit dem Programmsystem STRUCSY (1984) ausgeführt. Tabelle 1 enthält die Ortsparameter und isotropen Temperaturfaktoren.*

Diskussion. Die von Müller und Krebs aufgrund von Röntgenpulverdaten getroffene Zuordnung zum Baryttyp wird bestätigt. Die Wasserstoffpositionen des Ammoniumions konnten nicht lokalisiert werden. Wahrscheinlich ist NH_4^+ im untersuchten Temperaturbereich orientierungsfehlgeordnet, wofür es auch schwingungsspektroskopische Hinweise gibt (Baran & Aymonino, 1967). Der mittlere Mn–O-Abstand (vgl. Tabelle 2) beträgt 1,629 Å (mit Librationskorrektur)

Tabelle 1. Atomkoordinaten und äquivalente isotropeTemperaturfaktoren ($\times 10^4$) mit Standard-
abweichungen in Klammern

$U_{aa} = \frac{1}{3}(U_{11} + U_{22})$	$J_{22} + U_{22}$, ,).
---	-------------------	---------------

	x	у	z	$U_{\rm \ddot{a}o}({\rm \AA}^2)$
N	3207 (6)	2500	6591 (8)	311
Mn	4347 (1)	2500	1949 (2)	282
O(1)	3137 (7)	2500	465 (8)	514
O(2)	5902 (6)	2500	1059 (8)	635
O(3)	4171 (3)	229 (6)	3161 (5)	399

 Tabelle 2. Interatomare Abstände (Å) und Winkel (°)

 mit Standardabweichungen in Klammern

Mn-O(1)	1,603 (7)/1,624*	N-O(2)	2,961 (9) ×1
-O(2)	1,613 (6)/1,634	-O(3)	3,058 (7) ×1
-O(3)	1,611 (4)/1,629	-O(3 ¹)	2,986 (6) ×1
-O(3 ⁱ)	1,611 (4)/1,629	-O(3 ¹¹)	2,986 (6) ×1
Mittelwerte	1,610 1,629	-O(3 ¹¹¹)	2,934 (6) ×1
N-O(1)	2.949 (9) × 1	$-O(3^{iv})$	2,934 (6) ×1
$-O(1^{i})$	3,266 (4) × 2	-O(3 ^v)	3,058 (7) ×1
O(1)-Mn-O(2)	110,4 (6)	O(2)-Mn-O(3)	109,5 (4)
O(1)-Mn-O(3)	109,3 (4)	$O(2)-Mn-O(3^{i})$	109,5 (4)
O(1)-Mn-O(3 ⁱ)	109,3 (4)	O(3)-Mn-O(3 ⁱ)	108,9 (3)

Symmetrie Code: (i) $\frac{1}{2} - x$, $\frac{1}{2} + y$, $\frac{1}{2} + z$; (ii) x, $\frac{1}{2} - y$, z; (iii) $\frac{1}{2} - x$, -y, $\frac{1}{2} + z$; (iv) -x, -y, -z; (v) -x, $\frac{1}{2} + y$, -z.

* Librationskorrigierte Abstände.

© 1985 International Union of Crystallography

^{*} Die Liste der Strukturfaktoren und die Tabelle der anisotropen Temperaturfaktoren sind bei der British Library Lending Division (Supplementary Publication No. SUP 42419: 6 pp.) hinterlegt. Kopien sind erhältlich durch: The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

bzw. 1,618 Å (unkorrigiert) und stimmt damit innerhalb der Fehlergrenzen mit den für $KMnO_4$ (1,629 Å) und AgMnO₄ (1,633 Å) bestimmten Werten überein (Palenik, 1967*a*; Chang & Jansen, 1984). Bezogen auf die gemittelten Mn–O-Abstände ist somit innerhalb der Fehlerbreite kein Einfluss der einwertigen Kationen erkennbar.

Literatur

BARAN, E. J. & AYMONINO, P. J. (1967). Z. Anorg. Allg. Chem. 354, 85–89.

BRAUER, G. (1981). Handbuch der Präparativen Anorganischen Chemie, Bd. III, S. 1585. Stuttgart: Ferdinand Enke.

CHANG, F. M. & JANSEN, M. (1983). Z. Anorg. Allg. Chem. 507, 59–65.

CHANG, F. M. & JANSEN, M. (1984). Z. Kristallogr. 169, 295-298.

International Tables for X-ray Crystallography (1974). Bd. IV. Birmingham: Kynoch Press. (Gegenwärtiger Verteiler D. Reidel, Dordrecht.)

MÜLLER, A. & KREBS, B. (1966). Z. Naturforsch. Teil B, 21, 3-7.

PALENIK, G. J. (1967a). Inorg. Chem. 6, 503-506.

PALENIK, G. J. (1967b). Inorg. Chem. 6, 507-511.

STRUCSY (1984). Stoe-Siemens Programmpaket zur Kristallstrukturbestimmung.

Acta Cryst. (1985). C41, 1694–1696

Structure of Boracite $Cu_3B_7O_{13}I$

BY G. BERSET, W. DEPMEIER, R. BOUTELLIER AND HANS SCHMID Chimie Appliquée, Université de Genève, CH 1211 Genève, Switzerland

(Received 23 November 1984; accepted 1 August 1985)

Abstract. $M_r = 601.07$, cubic, $F\overline{43}c$, a = 12.0203 (7) Å, V = 1736.9 (1) Å³, Z = 8, $D_x = 4.608 \text{ Mg m}^{-3}$, $\lambda(\text{Mo } K\alpha) = 0.71069 \text{ Å}$, $\mu(\text{Mo } K\alpha) = 9.99 \text{ mm}^{-1}$, F(000) = 2232, T = 298 K, final R = 0.014 for 110 unique reflections. This new boracite has been prepared by high-pressure synthesis; its structure is comparable with that of other cubic boracites. No structural phase transition could be observed between 15 and 1265 K.

Introduction. It is well known that, in spite of many attempts, the existence of CuI_2 has never been proved (Jørgensen, 1965, 1970). In consequence, the traditional route to synthesize boracites (Schmid, 1965) was not successful for obtaining $Cu_3B_7O_{13}I$, owing to the fact that this method involves gas-phase transport with the metal(II) halides operating as reaction intermediates. Therefore, it was interesting to find out whether Cu^{2+} and I^- could perhaps be incorporated under high pressure into a borate framework, forming the boracite of composition $Cu_3B_7O_{13}I$.

A method for preparing boracites, using high pressure applied to condensed phases, has been introduced by Bither & Young (1974). Recently, we have employed this method to obtain large single crystals of $Co_3B_7O_{13}F$, enabling us to determine the structure and some of the properties of this boracite (Berset, Yvon, Depmeier, Boutellier & Schmid, 1984). The present paper reports now the successful high-pressure synthesis of $Cu_3B_7O_{13}I$ (hereinafter called Cu-I) and the results of the structure refinement.

Experimental. The synthesis is a version of the procedure described by Bither & Young (1974), adapted to our laboratory: six-anvil press, cube-shaped high-pressure cell; starting materials: stoichiometric mixtures of CuI (purum, Fluka), CuO (specpure, Johnson Matthey Chemicals), I₂ (puriss p.a., Fluka), B₂O₃ (puratronic, Johnson Matthey Chemicals) and 15% excess B₂O₃ as H₃BO₃ (pro analysi, Merck), typical total weight 770 mg; platinum crucible; hydrostatic pressure of 25 $\times 10^8$ Pa; 1132 K for 2 h; cooling rate 100 K h⁻¹; quenching after 3.5 h. Yellowish-brown idiomorphic crystals; facets {100}, {110} and {111}; maximum size 200 µm. Refractive index (1.92), measured by the immersion technique; good agreement (1.924) with the result obtained employing the Gladstone-Dale equation (Mandarino, 1981), using an estimated value for the Gladstone-Dale constant of CuI₂ obtained by interpolation between those of NiI₂ and ZnI₂.

No phase transition was found up to 1265 K by means of differential thermal analysis (Mettler TA-2000), and down to 15 K by means of optical observation under polarized light.

Data collection: regularly shaped crystal, approximately 0.1 mm \emptyset ; Philips PW 1100 diffractometer, graphite monochromator; one hemisphere (-13 $\leq h, k \leq 13$), $(\sin\theta/\lambda)_{max} = 0.5719$ Å⁻¹; $\omega-2\theta$ scan, scan width 0.9°, scan speed 0.03° s⁻¹; background measured on both sides of the reflection for half the scan time used for the peak; two standard reflections after every 120 min (no significant change);

© 1985 International Union of Crystallography